
	 1	

TNS APIs Manual
 Updated: Dec 2020

Table	of	Contents	

1.	 General	...	2	

2.	 Change	proprietary	period	end	date	...	3	

3.	 Search	objects	...	4	

4.	 Get	object	(details/entries)	...	5	

5.	 Get	file	..	6	

6.	 Feedback	messages	...	7	

7.	 Sample	codes	..	8	
	

	 	

	 2	

1. General	

This manual serves for explanation of the additional APIs maintained by the TNS, for changing
proprietary period end date and retrieving object lists and object details by various criteria. The
Bulk report API is described in the corresponding Bulk report manual.

As opposed to the Asynchronous Bulk report mechanism, the APIs described here are
synchronous; i.e. a reply JSON is obtained immediately, without having to check for a reply for
a given report-id.

We have set up on our sandbox site an API TEST FORM webpage where it is possible to
experiment with the various APIs. The URL of the API TEST FORM page is:

https://sandbox.wis-tns.org/api

where three forms are available for experimenting with the following APIs:

- Bulk report (as mentioned, refer to the Bulk report manual)
- Change prop period
- Search, which includes the Search, Get object, and Get file APIs.

An api_key should always be provided (defining the sending Bot). The input JSON-formatted
data is placed in the relevant section’s JSON editor, and upon submission, the reply JSON is
displayed on the same editor.

Further explanations about the sandbox can be found in Sec. 2 of the Bulk report manual.

Explanations about the Bots and the API-Keys can be found in Sec. 3 of the Bulk report
manual.

A PHP sample code is provided for assisting with the development of the Change prop. period
end date and the Get object APIs, as examples, and this is explained in Sec. 7.

Do not hesitate to contact us for any assistance and/or clarifications.

	 	

	 3	

2. Change	proprietary	period	end	date	

2.1. General

This API serves for updating the prop. period end date of reported entries, for switching an
AT report and/or classification report and/or spectra to public, either on the same day or
some future date (back-dating is not possible). Only a bot that is associated with the group
that submitted the report (AT/Classification/spectra) can request to perform such a change
to the prop. period end date. The sample code as described in Sec. 8 provides an example
for this API.

2.2. URL: https://www.wis-tns.org/api/set/prop-period

 Sandbox URL: https://sandbox.wis-tns.org/api/set/prop-period

2.3. Data description

• Type: POST
• Mandatory parameters:

o api_key – the bot’s API Key
o data – holds the JSON report

2.4. JSON key-value list

• Specified in red are mandatory keys; in green example values, and remarks (not part of

the JSON) in blue.
• Fields containing preset values (e.g. groupid) must include the appropriate value id. A

list (in JSON format)	 of possible values can be viewed on the Bulk report page or
downloaded at: https://www.wis-tns.org/api/values

• It is possible to change the end prop. period date for any of the following reported
entries (by toggling the ‘0’ / ‘1’ values): AT report (together with the associated
photometry points), Classification report, and the uploaded spectra.

{
 "objname": "2016abc",
 "groupid": "2",
 "end_prop_period_date": "2016-12-31",
 "at": "1", // “1” or “0” for updating or not the relevant
 "classification": "0", // ATs/classifications/spectra.
 "spectra": "0"
}

2.5. If no errors, the reply feedback contains counters of the updated entries, e.g.:

 "feedback": {
 "affected_rows": {
 "at": {
 "at_reps_count": 1,
 "obj_count": 1,
 "phot_count": 2
 },
 "classification": 1,
 "spectra": 1
 }
 }

	 4	

It is recommended to check the relevant counter/s for verifying that the operation was successful.
Relevant possible errors are e.g. {0,6,7}, as specified in the feedback messages table in Sec. 6.

3. Search	objects	

3.1. General

This API serves for listing the object names (objname & prefix) satisfying given search
criteria. The search criteria are (applying “AND” operator for whichever combination of
parameters):

• Cone search for given RA/DEC, radius & units.
If RA/DEC are specified without values for radius/units, the default values used are
3 arcsec.

• Object name (like)
• Internal name (like)

Access permissions are taken into account. If an object is proprietary (not public), only a
Bot that is associated with its reporting (source) group will have access to it. Likewise, for
the following Get object API.

3.2. URL: https://www.wis-tns.org/api/get/search

 Sandbox URL: https://sandbox.wis-tns.org/api/get/search

3.3. Data description

• Type: POST
• Mandatory parameters:

o api_key – the bot’s API Key
o data – holds the JSON report

3.4. JSON key-value list

e.g. A cone search, including a given internal name:
{
 "ra": "05:24:18.0",
 "dec": "+09:10:37.0",
 "radius": "5",
 "units": "arcsec",
 "objname": "",
 "objname_exact_match": 0,
 "internal_name": "Gaia16azh",
 "internal_name_exact_match ": 0,
 "objid": "",
 "public_timestamp": ""
}

3.5. The JSON reply array contains a list of object (+prefix) names; e.g.:

 "reply": [
 {
 "objname": "2016evp",
 "prefix": "AT"
 }
]

	 5	

4. Get	object	(details/entries)	

4.1. General

This API retrieves object details per given object name, including its associated photometry
and/or spectra if requested.

The object name should be exact (e.g. the ‘objname’ value as obtained by the previous
Search objects API), and without prefix; e.g. ‘2016abc’.

If the object’s spectra are requested, the ascii/FITS files of the spectrum/a will be specified
in the JSON key-value reply list. To download the actual file/s use the following Get file
API.

4.2. URL: https://www.wis-tns.org/api/get/object

 Sandbox URL: https://sandbox.wis-tns.org/api/get/object

4.3. Data description

• Type: POST
• Mandatory parameters:

o api_key – the bot’s API Key
o data – holds the JSON report

4.4. JSON key-value list

{
 "objname": "2016G",
 "photometry": "1", // “1” or “0” for retrieving or not the associated photometry/spectra
 "spectra": "1"
}

4.5. The reply JSON contains the object details. A spectrum section within the reply list may

look like, e.g.:

 "spectra": [
 {
 "obsdate": "2016-01-10 14:42:31",
 "jd": 2457400,
 "public": "1",
 "end_prop_period": null,
 "exptime": "2100",
 "groupid": "0",
 "observer": "Jujia Zhang",
 "reducer": "Jujia Zhang",
 "asciifile": "https://www.wis-tns.org/system/files/uploaded/None/None_2016G_2016-01-
10_14:42:31_LJT_YFOSC.dat",
 "fitsfile": "",
 "remarks": "",
 "source_group_name": null,
 "instrument": {
 "id": "107",
 "name": "YFOSC"
 },
 "telescope": {
 "id": "77",

	 6	

 "name": "LJT"
 }
 }
], ...

5. Get	file	

5.1. General

This API serves for downloading a given file via providing the appropriate URL, as e.g.
obtained from the Get object API.

Clearly, a check is performed that the requesting Bot (via the supplied api_key) has access
permission to the required URL.

 Files on the public domain (not proprietary) can be accessed without providing an api_key.

5.2. URL: The file’s URL; e.g. from the ‘asciifile’ key above:

https://www.wis-tns.org/system/files/uploaded/None/None_2016G_2016-01-
10_14:42:31_LJT_YFOSC.dat

5.3. Data description

• Type: POST
• Mandatory parameters:

o api_key – the bot’s API Key
	 	

	 7	

6. Feedback	messages	

6.1. General

The feedback messages can be easily identified by their message id’s, allowing for efficient
parsing of the resulting feedbacks. We list here the mapping between the message id’s and
their corresponding texts. (The majority of the listed messages are relevant for the Bulk report
API; messages 7,10,110 are revelant for the APIs of this manual.)

6.2. Mapping of the messages

Message id

Message Provided values

General

200 OK
201 Created
400 Bad request
401 Unauthorized
403 Forbidden
404 Not Found

Blocking
errors

0 Invalid
1 Last non-detection should precede the Discovery Datetime
2 At least one Photometry point - that of the discovery - should

be filled

3 Required field
4 Proprietary period cannot extend more than 100 years
5 An identical AT report (sender, RA/DEC, discovery date)

already exists

6 Last non-detection or archival info must be filled
7 Proprietary period cannot be backdated
10 Unauthorized
20 ASCII file or FITS file must be uploaded
21 At least one Spectra should be filled
22 An ASCII file must be uploaded

Feedbacks

100 Transient object was inserted objname (eg ‘2016abc’)
101 Transient object exists objname (eg ‘2016abc’),

prefix (eg ‘AT’), type, RA,
DEC, separation

102 Related file uploaded
103 Submitted
110 No results found
120 New object type set new_object_type
121 Object name prefix has changed new_object_name
122 Object redshift was set new_redshift
123 Object redshift changed new_redshift

	 8	

7. Sample	codes	

7.1. General

 A set of functions written in PHP is provided to serve as examples for developing the
necessary codes for the APIs listed in this manual. The sample code (zipped) files can be
downloaded from the provided links on the TNS help page.

The sample codes direct to the sandbox site for experimentation, e.g.:

class TNSClient {

 /// TNS's API URL
 protected static $baseAPIUrl = 'https://sandbox.wis-tns.org/api/';

Change this URL to 'https://www.wis-tns.org/api/’ for working against the real site.

7.2. Sample code for the Change prop period API

Name: tns_api_change_prop_period_sample_code.php

 The section that submits the request and receives the reply is given as follows:

define('API_KEY', '1234567890123456789012345678901234567890');

// Change prop period.
$feed_handler = new TNSClient(array('api_key' => API_KEY));
$json = array(
 "objname" => "2016csv",
 "groupid" => "2",
 "end_prop_period_date" => "2016-10-10",
 "at" => "1",
 "classification" => "0",
 "spectra" => "0"
);
$reply = $feed_handler->setPropPeriod(json_encode($json));
print_r($reply);

 Parsing the reply (if in error or not) can be performed as follows:

// Check if key is present.
$find = findKey($reply, 'id_code');
$find = intval($find);

if($find > 400) {
 print_r('General error: ' . $reply['id_message']);
}
else if($find == 400) {
 print_r('Bad request. Please check feedback for more information');
}
else {
 // Do something.
}

	 9	

7.3. Sample code for the Search, Get object & Get file APIs

Name: tns_api_search_sample_code.php

The section that submits the query and receives the reply is given as follows (in this
example, a 5 arcsec cone search):

define('API_KEY', '1234567890123456789012345678901234567890');

// Send search parameters.
$feed_handler = new TNSClient(array('api_key' => API_KEY));
$json = array(
 "ra" => "05:24:18.0",
 "dec" => "+09:10:37.0",
 "radius" => "5",
 "units" => "arcsec",
 "objname" => "",
 "internal_name" => ""
);
$reply = $feed_handler->getSearch(json_encode($json));
print_r($reply);

If no errors, looping over the retrieved objects and for each one obtaining it’s details (Get
object API), including the photometry and spectra entries. For each spectrum, downloading
its asciifile using the Get file API implementation.

// Check if key is present.
$find = findKey($reply, 'id_code');

if($find > 400) {
 print_r('General error: ' . $reply['id_message']);
}
else if($find == 400) {
 print_r('Bad request. Please check feedback for more information');
}
else {
 $obj_request = array(
 "photometry" => "1",
 "spectra" => "1"
);

 // Looping over retrieved objects list
 foreach($reply['data']['reply'] as $delta => $objname) {
 $obj_request["objname"] = $objname['objname'];

 // Retrieving object's data (photometry,spectra)
 $object = $feed_handler->getObject(json_encode($obj_request));
 print_r($object);

 // Check if key is present.
 $obj_find = findKey($reply, 'id_code');

 if($obj_find > 400) {
 print_r('General error: ' . $reply['id_message']);
 }
 else if($obj_find == 400) {
 print_r('Bad request. Please check feedback for more information');

	 10	

 }
 else {
 foreach($object['data']['reply']['spectra'] as $index => $spectra) {
 if(isset($spectra['asciifile']) && !empty($spectra['asciifile'])) {
 $ascii = $feed_handler->getFile(array('file' => $spectra['asciifile']));
 $filename = basename($spectra['asciifile']);
 file_put_contents($filename, $ascii);
 }
 }
 }
 }
}

 The getObject function is defined as follows:

 public function getObject($options = array()) {
 $feed_url = $this->buildUrl('get/object');
 $feed_parameters = $this->buildParameters(array('data' => $options));
 return $this->getFeed($feed_url, $feed_parameters);
 }

 Whereas the getFile function is:

 public function getFile($options = array()) {
 $feed_url = $options['file'];
 $feed_parameters = $this->buildParameters(array());
 return $this->getFeed($feed_url, $feed_parameters);
 }

