
	 1	

 

Bulk API Manual - Automated reporting to the TNS   
         Updated: Dec 2020 (adapted to AWS env.) 
 
 

 
 

Table	of	Contents	

1.	 General	................................................................................................................................	2	

2.	 Bots	.....................................................................................................................................	3	

3.	 The	SANDBOX	Environment	and	the	“Bulk	report”	API	test	page	.........................................	3	

4.	 File	Uploads	.........................................................................................................................	7	

5.	 AT	and	Classification	Reports	...............................................................................................	7	

6.	 TSV	submission	..................................................................................................................	12	

7.	 Feedback	messages	............................................................................................................	13	

8.	 Sample	code	......................................................................................................................	15	
	
 
	 	



	 2	

1. General	
 
AT reports (AT reps) and Classification reports (Class reps) can be submitted to the 
TNS by either using the interactive forms on the TNS website, or via the "Bulk" API 
method - submission of JSON-formatted data or TSV (Tab-Separated-Values) lists in 
an automated way from defined machines ("Bots") of e.g. the various contributing 
surveys. 
 
The Bulk reports are being processed as promptly as possible in an asynchronous 
mode, dependent on the actual incoming queue of reports and the server’s available 
resources. (Usually the processing of the reports is immediate.) 
 
- Each report, sent to the TNS by the Bulk API (JSON/TSV), receives a sequential 

report-id that is provided to the sender of the report (serving as a “receipt”). 
- The sending machine should query the API (every second or a few) for the reply of 

the corresponding report-id. 
- The report is processed in its turn, and once a reply is obtained for the given report-

id, the sending machine can relate to it and parse the resulting feedbacks (e.g. if a 
new event was created or if it already exists on the system for the reported 
coordinates, the newly designated or existing name, etc…). 

 
We have set up on our “sandbox” site an API TEST webpage where it is possible to 
experiment with submission of reports using a dedicated form. This is described in 
Section 3. 
 

 
PHP & Python sample codes are provided for assisting with the development of the 
relevant scripts, explained in Section 8. 
 
The JSON format for preparation of the AT and Class Reps are described in Section 4. 
 
Do not hesitate to contact us for any assistance and/or clarifications. 
 
 

  

Important – Please do not commence sending real Bulk reports to the 
production site before verifying on the sandbox environment that all your 
codes and scripts work flawlessly and that the JSON/TSV are submitted and 
processed in a correct manner!	



	 3	

2. Bots	
	

1.1.  General 
 
Registered users can define Bots that are required for sending automated reports using 
the Bulk API. This is done by clicking the “+Add bot” button on the BOTS page: 
https://www.wis-tns.org/bots 
 
A Bot, e.g. “PESSTO_Bot0”, is associated with a survey/group and includes a definition 
of an api_key, which serves for authentication of any data submitted to the TNS from 
the given Bot. It is possible to define multiple Bots per given survey/affiliation. 
 
For associating a Bot with specific group/s, click to edit the Bot on the BOTS page and 
then select the required group/s, for the group owner/s to approve. (The users and bots 
associated with each group are displayed on the GROUPS page.) 
 
1.2.  Obtaining an API Key 
 
Upon creation of a Bot, an api_key is provided to the relevant person/s handling the 
automatic reports from the survey/group. This api_key should be kept and used for the 
submission of any data entry. 
 
If there’s a need for a new api_key, an owner of the Bot may click to edit the Bot (on 
the BOTS page) and there check the “Create new API Key” checkbox and save. The 
newly created api_key will be displayed. 

3. The	SANDBOX	Environment	and	the	“Bulk	report”	API	test	page	
 

3.1.  General 
 
For experimentation and development of the sending of reports via the bulk API (and 
the additional available API’s) we’ve set up the following sandbox site: 
 
https://sandbox.wis-tns.org 
 
This site is a replica of the production site but such that the data can be freely 
experimented with. Once a week, on Sunday UT 04, the data on the sandbox site is 
reset with data from the real site, so note that any data you have submitted for 
experimentation will be gone after the reset. 
 
In this respect, note that also the Bots that have been defined in the sandbox env. will 
be overridden by the Bots as they are defined on the production site. Therefore, best to 
have your Bots defined on the production site also during the experimentation period 
so that their definitions hold and remain on the sandbox. 
 

 
3.2.  The “Bulk report” API test page 
 
The API TEST FORM page is active only on the sandbox site, and its aim is to serve 
for experimentation with the various APIs, including the sending of JSON/TSV reports. 
The form on the Bulk report tab mimics the stages that should be implemented by the 
scripts for the automated submissions to the TNS. 



	 4	

 
 https://sandbox.wis-tns.org/api/bulk-report-form 
 

 
The Bulk report form consists of the following 4 stages: 
 

v Insertion of the api_key (must be specified for authentication). 
 

v Uploading of the relevant files (e.g. related files, the spectrum files of a 
classification report etc…). 

 
 After clicking the Submit button, a reply is displayed in the JSON editor below to 
 approve that the files were uploaded successfully (or not), with the exact temporary 
 names as they should be specified in the report itself. E.g.: 
 
 

    
 
 

v Submission of the report itself by either uploading a TSV file or by specifying the 
JSON-formatted data in the JSON editor window. 

 
 Clicking the “Get AT report example” or “Get Classification report example” (below 
 the “Send data” button of the JSON editor) loads to the JSON editor an example 
 template of the given report. 
 



	 5	

 Also for the TSV submission there are example files that can be downloaded by 
 clicking the “AT report example file” or “Classification report example file” (below 
 the “Send data” button of the TSV section). 
 
 After submission of a JSON or TSV report (by clicking the “Send data” button), a 
 confirmation for the submitted report appears in the JSON editor, with specification 
 of the obtained report-id. E.g.: 
 
 

    
   
 
 The report is then automatically processed. 
 
 

v Checking for the reply of the processed report.  
 
 Upon inserting the given report-id and clicking on the “Get reply” button, the reply 
 JSON of the report is displayed in the JSON editor, with the relevant feedback 
 indications and messages. E.g.: 
 
 



	 6	

    
 
  
  
Note that in the JSON editor windows, the JSON data can be displayed in both 
 “Code” and “Tree” modes. (For copy/pasting lines use the “Code” mode, clearly.) 
 
 

  



	 7	

4. File	Uploads	
 

4.1.  General 
 
 Any files accompanying a report, e.g. a related file, spectrum etc…, should be 
 uploaded to the system BEFORE the submission of the report itself. The report 
 should include the file name exactly as it was given by the feedback to the upload, 
 see 5.4, otherwise the system will not be able to locate it. 
 
4.2.  URL: https://www.wis-tns.org/api/file-upload 

Sandbox URL: https://sandbox.wis-tns.org/api/file-upload 
 

4.3.  Data description 
  

• Type: POST 
• Mandatory parameters: 

o api_key – the bot’s API Key 
o files[i] – array of files to upload; i=0…N (number of uploaded files) 

 
4.4.  Upon a successful upload, the system will reply back with a name for each of the 

uploaded files (the names of the files may be changed by the system). 
 
 
 
 
 

5. AT	and	Classification	Reports	
 
5.1. General 
 
 Submission of reports by JSON-formatted data allows for the maximal flexibility. A 
 single or multiple entries (of an AT or Classification report/s) can be specified, and 
 for specific items within a report (e.g. photometry entries in the AT report or spectra 
 entries in a classification report) up to 10 entries can be specified, exactly like in the 
 interactive dedicated forms (“AT/Classification Report Form”). 
 
 The amount of entries to be listed within a single AT or Classification submission is 
 limited to 100. So, for instance, if your survey’s mode of operation is defined to send 
 discovery reports in a summarized way (at the end of the night or every several 
 hours) rather than for each discovered candidate transient separately, and the list 
 surpasses 100 entries, it should be split to several reports. 
 

Sections 4.2 and 4.3 below list the complete possible key-value pairs for the AT and 
Class Reps. Note that these values, as well as the allowed  formats and 
mandatory vs. non-mandatory parameters are in complete agreement with the 
interactive forms webpages. 

 
 For obtaining the necessary id’s of the groups, instruments, filters, units, object-
 types, spectrum-types etc…, check on the Bulk report page the “Get all options’ 
 values” in the JSON submit section (below the JSON editor). 
 



	 8	

5.2.  URL: https://www.wis-tns.org/api/bulk-report 
 Sandbox URL: https://sandbox.wis-tns.org/api/bulk-report 
 

5.3.  Data description 
  

• Type: POST 
• Mandatory parameters: 

o api_key – the bot’s API Key 
o data – holds the JSON report 

 
5.4.  Upon a successful submission, a reply JSON is sent back with the  "report_id" 

identifying the report that was just submitted. Use this report in order to request 
back the submission reply (see section 8) Note: we expect the reply to be ready 
immediately, however, this depends on the server's load and may take a little 
longer. Therefore, we suggest to have a mechanism in place quering the server for 
a reply every several seconds, until a reply appears. In case there is a problem and 
no reply is obtained, please contact us by email and provide the report-id. 

 
 
5.5.  AT Report JSON key-value list 

 
• Specified in red are mandatory keys; in green example values, and remarks (not 

part of the JSON) in blue. 
• Internal name: It is possible to either provide the exact internal name of the 

object as it exists in the reporting survey, or instead, if the internal name is 
synced with the name provided by the TNS, to provide instructions for the 
construction of the internal name by specifying the internal_name_format 
values. E.g. if specifying the following internal_name_format values: 

"internal_name_format": { 
        "prefix": "iPTF", 
        "year_format": "YY", 
        "postfix": "" 
      }, 

  the internal name created for a TNS name 2016xyz will be iPTF16xyz. 
 

• All fields containing preset values (e.g. groupid, at_type, instrument_value…) 
must include the appropriate value id. A list (in JSON format)	 of possible values 
can be viewd on the Bulk page or downloaded at: https://www.wis-
tns.org/api/values 

 
 
{ 
  "at_report": { 
    "0": {      // “0” is always the first entry; if multiple entries 
      "ra": {      //  add “1”, ”2” etc… 
        "value": "10:20:30.04", 
        "error": "0.5", 
        "units": "arcsec" 
      }, 
      "dec": { 
        "value": "+20:30:40.05", 
        "error": "0.5", 
        "units": "arcsec" 
      }, 
      "groupid": "1",     // The groupid was replaced by the two 



	 9	

       // group_id’s in the following two lines: 
      "reporting_group_id": "1", 
      "discovery_data_source_id": "1", 
      "reporter": "J. Smith, on behalf of SurveyName...", 
      "discovery_datetime": "2016-03-01.234", 
      "at_type": "1", 
      "host_name": "NGC 1234", 
      "host_redshift": "", 
      "transient_redshift": "", 
      "internal_name": "", 
      "internal_name_format": {   // Possible to specify this if not specifying a  
        "prefix": "prefixStr",    // specific internal_name. 
        "year_format": "YY",    // Valid values: ‘YY’ / ‘YYYY’ 
        "postfix": "postfixStr" 
      }, 
 
      "remarks": "", 
      "proprietary_period_groups": [  // Associated groups are relevant mainly 
        "1",      // when specifying a proprietary period. 
        "2" 
      ], 
      "proprietary_period": { 
        "proprietary_period_value": "0",  // “0” if no proprietary period requested. 
        "proprietary_period_units": "days" 
      }, 
      "non_detection": {    // Like in the form – if there is no last 
        "obsdate": "2016-02-28.123",  // non-detection photometry measurement in 
        "limiting_flux": "21.5",   // hand, archival info should be specified. 
        "flux_units": "1", 
        "filter_value": "50", 
        "instrument_value": "103", 
        "exptime": "60", 
        "observer": "Robot", 
        "comments": "", 
        "archiveid": "", 
        "archival_remarks": "" 
      }, 
      "photometry": { 
        "photometry_group": { 
          "0": { 
            "obsdate": "2016-03-01.234", 
            "flux": "19.5", 
            "flux_error": "0.2", 
            "limiting_flux": "", 
            "flux_units": "1", 
            "filter_value": "50", 
            "instrument_value": "103", 
            "exptime": "60", 
            "observer": "Robot", 
            "comments": "" 
          }, 
          "1": {     //  If multiple photometry entries, add “1”,“2” etc 
            " obsdate ": "", 
            " flux ": "", 
            "flux_error": "", 
            "limiting_flux": "", 
            " flux_units ": "", 
            " filter_value ": "", 
            " instrument_value ": "", 



	 10	

            "exptime": "", 
            "observer": "", 
            "comments": "" 
          } 
        } 
      }, 
      "related_files": { 
        "0": { 
          "related_file_name": "FC.png", 
          "related_file_comments": "Finding Chart..." 
        }, 
        "1": { 
          "related_file_name": "DiscImage.jpg", 
          "related_file_comments": "Discovery image..." 
        } 
      } 
    } 
  } 
} 
 
 
 
5.6.  Classification Report JSON key-value list 
 
 
{ 
  "classification_report": { 
    "0": { 
      "name": "2016abc", 
      "classifier": "K. Smith, on behalf of SurveyName", 
      "objtypeid": "3", 
      "redshift": "0.123", 
      "groupid": "1", 
      "class_proprietary_period_groups": [  // Associated groups are relevant mainly 
        "1",      // when specifying a proprietary period. 
        "2" 
      ], 
      "remarks": "Another Ia", 
      "class_proprietary_period": {   // Proprietary period for the classification itself. 
        "class_proprietary_period_value": "0", 
        "class_proprietary_period_units": "days" 
      }, 
      "spectra": { 
        "spectra-group": { 
          "0": { 
            "obsdate": "2016-03-07.89", 
            "instrumentid": "1", 
            "exptime": "600", 
            "observer": "J. Smith", 
            "reducer": "K. Smith", 
            "spectypeid": "1", 
            "ascii_file": "FileName.ascii", 
            "fits_file": "FileName.fits", 
            "remarks": "", 
            "spec_proprietary_period": {  // Proprietary period for the provided spectrum. 
              "spec_proprietary_period_value": "1", 
              "spec_proprietary_period_units": "months" 
            } 



	 11	

          }, 
          "1": {     //  If multiple photometry entries, add “1”,“2” etc 
            "obsdate": "", 
            "instrumentid": "", 
            "exptime": "", 
            "observer": "", 
            "reducer": "", 
            "spectypeid": "", 
            "ascii_file": "", 
            "fits_file": "", 
            "remarks": "", 
            "spec_proprietary_period": { 
              "spec_proprietary_period_value": "", 
              "spec_proprietary_period_units": "days" 
            } 
          } 
        } 
      }, 
      "related_files": { 
        "0": { 
          "related_file_name": "Classification_plot.png", 
          "related_file_comments": "SNID Classification plot..." 
        }, 
        "1": { 
          "related_file_name": "", 
          "related_file_comments": "" 
        } 
      } 
    } 
  } 
} 
 
 

  



	 12	

6. TSV	submission	
 
6.1. General 
 
 Submission of reports by constructing of TSV (Tab-Separated-Values) files is less 
 recommended than the JSON-formatted data and serves as a kind of a “shortcut”, if 
 willing to submit multiple entries (up to the 100 limit) of an AT or Classification 
 report  in a less flexible way. 
 Why less flexible? Because in a TSV list, each entry spans only a single row, so 
 e.g. only one photometry point, that of the discovery, can be specified for an AT 
 report, or only a single spectrum for a classification report.  
 Also note that a TSV report can hold an AT report OR classification report, but not 
 both. 
 
 Sections 5.2 and 5.3 below show the columns of the TSV lists; example files are 
 available for download on the Bulk report page as mentioned in Section 3.2 
 (stage 3 of the bulk page). 
 
6.2.  URL: https://www.wis-tns.org/api/csv-report 

 Sandbox URL: https://sandbox.wis-tns.org/api/csv-report 
 

6.3.  Data description 
  

• Type: POST 
• Mandatory parameters: 

o api_key – the bot’s API Key 
o data – holds the TSV report 

 
6.4.  Upon a successful submission, a reply JSON is sent back with the "report_id" 

identifying the report that was just submitted. All details described in section 6.4 
hold here as well. 

 
 
6.5.  AT Report TSV format 
 

• Columns for which specifying a value is mandatory are marked with ‘*’. 
• All fields containing preset values (e.g. groupid, at_type, instrument_id…) must 

include the appropriate value id. See section 6.5 for details. 
 

 
 

 
 

 



	 13	

6.6. Classification Report TSV format 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 

7. Feedback	messages	
 

7.1. General 
 
 The feedback messages obtained from the Bulk API are similar to those obtained 
 on the interactive AT and Classification report forms. The messages can be easily 
 identified by their message id’s, allowing for efficient parsing of the resulting 
 feedbacks.  We list here the mapping between the message id’s and their 
 corresponding texts. 
 
7.2.  URL: https://www.wis-tns.org/api/bulk-report-reply  

 Sandbox URL:	https://sandbox.wis-tns.org/api/bulk-report-reply  
 

7.3.  Data description 
  

• Type: POST 
• Mandatory parameters: 

o api_key – the bot’s API Key 
o report_id – holds the report-id provided from the report submission 

interface. 
 



	 14	

7.4. Mapping of the messages  
 

 
Message id 

 
Message Provided values 

General 
 

  

200 OK  
201 Created  
400 Bad request  
401 Unauthorized  
403 Forbidden  
404 Not Found  
   
Blocking 
errors 
 

  

0 Invalid  
1 Last non-detection should precede the Discovery Datetime  
2 At least one Photometry point - that of the discovery - should 

be filled 
 

3 Required field  
4 Proprietary period cannot extend more than 100 years  
5 An identical AT report (sender, RA/DEC, discovery date) 

already exists 
 

6 Last non-detection or archival info must be filled  
7 Proprietary period cannot be backdated  
10 Unauthorized  
20 ASCII file or FITS file must be uploaded  
21 At least one Spectra should be filled  
22 An ASCII file must be uploaded  
   
Feedbacks 
 

  

100 Transient object was inserted objname (eg ‘2016abc’) 
101 Transient object exists objname (eg ‘2016abc’), 

prefix (eg ‘AT’),  type, RA, 
DEC, separation 

102 Related file uploaded  
103 Submitted  
110 No results found  
120 New object type set new_object_type 
121 Object name prefix has changed new_object_name 
122 Object redshift was set new_redshift 
123 Object redshift changed new_redshift 
   

 
 
 
  



	 15	

8. Sample	code	
 

8.1.  General 
 
 A set of functions written in PHP is provided to serve as an example for 
 developing the necessary code for the automated Bulk submission to the TNS of 
 the AT or Classification reports. The sample code file can be downloaded from the 
 provided link on the help page. 
 

A Python sample code, kindly provided by Ken Smith from QUB, is also available 
for download from the provided link on the help page. (The python code receives as 
arguments the api_key and a filename containing the JSON-formatted report.) 

 
 A reminder - All the development and experimentations should be performed 
 against the sandbox environment. Only when fully debugged and verified should 
 real reports be sent to the production site. 
 
8.2.  Structure of the PHP sample code 
 
 The sample code consists of various definitions and functions, including a helper 
 function that constructs an example AT-Rep JSON. (Similar procedures can be 
 implemented for Classification reports.) 
  
 The sample code directs to the sandbox site for experimentation: 
 

 
 
  
 The section that submits the report and receives the appropriate report-id is given 
 as follows: 
 
  

 
 
 
 Next, looping until the report is processed and a reply is created (limiting the looping 
for ~1 min – 60 times – is just an example of a possible implementation): 
 



	 16	

 

 
 
 
 Finally, parsing the results may be performed as follows: 
 
 

 
 
  
 The sample code can be executed from the command line as is (after arrangement 
 of the api_key, of course, and whichever additional details) by e.g.: 
 
 php tns_bulk_sample_code.php 

  
 
 


